

double x1;

double x2;

double x3;

double x4;

double x5;

double x6;

double x7;

Say we write a program that only ever uses 7 variables:

x1 = 5.2;

x2 = 9.3;

x3 = -10.1;

cin >> x4;

cin >> x5;

cin >> x6;

cin >> x7;

Each variable can only store one value at a time:

Suppose we want to process a stream of data...

-11.35

 39.32

 28.56

 -5.30

-29.34

 82.51

 0.00

7 items

No problem. We have 7 variables.

-11.35

 39.32

 28.56

 -5.30

-29.34

 82.51

 0.00

7 items

double x1;

double x2;

double x3;

double x4;

double x5;

double x6;

double x7;

What if we have 8 items?

-11.35

 39.32

 28.56

 -5.30

-29.34

 82.51

 0.00

 2.03

8 items

We don't have enough variables...

-11.35

 39.32

 28.56

 -5.30

-29.34

 82.51

 0.00

 2.03

8 items

double x1;

double x2;

double x3;

double x4;

double x5;

double x6;

double x7;

???

The solution is not to add another variable...

-11.35

 39.32

 28.56

 -5.30

-29.34

 82.51

 0.00

 2.03

8 items

double x1;

double x2;

double x3;

double x4;

double x5;

double x6;

double x7;

double x8;

Because what if we actually have 9 items?

-11.35

 39.32

 28.56

 -5.30

-29.34

 82.51

 0.00

 2.03

 10.55

9 items

double x1;

double x2;

double x3;

double x4;

double x5;

double x6;

double x7;

double x8;

 ???

Because what if we actually have 10 items?

-11.35

 39.32

 28.56

 -5.30

-29.34

 82.51

 0.00

 2.03

 10.55

 -2.60

10 items

double x1;

double x2;

double x3;

double x4;

double x5;

double x6;

double x7;

double x8;

 ???

 ???

Because what if we actually have 1 million items?

-11.35

 39.32

 28.56

 -5.30

-29.34

 82.51

 0.00

 2.03

 10.55

 -2.60

 7.98

 12.01

-72.77

 18.00

1 million items

double x1;

double x2;

double x3;

double x4;

double x5;

double x6;

double x7;

double x8;

 ???

 ???

 ???

 ???

 ???

 ???

Our programs can't grow once they're compiled,
put in a machine, and the machine is deployed...

(At least, not C++ programs.)

So if we ever (anywhere in our program, even
inside loops) mention only 7 variables, we can
only store 7 values at once.

So how do we process arbitrary streams of data,
whose size cannot be known ahead of time?

If we are only summing the data, we don't need
to keep all of it.

We can just add every item to a sum, then
forget that item and move on to the next.

But what if we wanted to find the median, the
mode, the standard deviation, or sort the data?

In these cases...

We have to store all the data somewhere.

We have big "memories" (say, 4GB)...

Can't we put data in there?

But we still have this issue of a fixed number of
variables; once we compile our code, we can't
add more variables.

Here is one solution.

Reserve two variables.
(for this solution, we always need only two variables)

Now, we want to prepare to "store" (in memory) the
first item from the stream.

-11.35???

Before we get that item, we ask for a chunk of memory
to be "reserved" for our use.

 double* first = (give me a memory location...)

We save this location in first (which is a pointer).

location: 2096

Before we get that item, we ask for a chunk of memory
to be "reserved" for our use.

 double* first = (give me a memory location...)

We save this location in first (which is a pointer).

Now, put the item from the stream in that memory
chunk.

 cin >> *first; // * means "go to that location"

-11.35-11.35location: 2096

Before we get the second item, we have to reserve
another memory chunk. Let's reserve the next chunk:

 (reserve the chunk starting at "first + 1"...)

We don't save this location because, well, we know
where it is:

 first + 1

Save the item in that location:

 cin >> *(first + 1);

-11.35-11.35location: 2096

 39.32 39.32location: 3004

Do it again for the third item:

 (reserve the chunk starting at "first + 2"...)

We don't save this location because, well, we know
where it is:

 first + 2

Save the item in that location:

 cin >> *(first + 2);

-11.35-11.35location: 2096

 39.32 39.32location: 3004

 28.56 28.56location: 3012

Do it again for the fourth item:

 (reserve the chunk starting at "first + 3"...)

We don't save this location because, well, we know
where it is:

 first + 3

Save the item in that location:

 cin >> *(first + 3);

-11.35-11.35location: 2096

 39.32 39.32location: 3004

 28.56 28.56location: 3012

 -5.30 -5.30location: 3020

And so on...

1 22 3 million times...

-11.35-11.35location: 2096

 39.32 39.32location: 3004

 28.56 28.56location: 3012

 -5.30 -5.30location: 3020

-29.34-29.34location: 3028

 82.51 82.51location: 3032

 0.00 0.00location: 3040

 2.03 2.03location: 3048

etc...

This entire time, we've only used our two reserved
variables:

 double* first

and which other?

We kept adding to first; we added the number of data
items we had already seen. So we need a count variable:

 int count

That makes our calculations before look like this:

 (reserve the chunk starting at "first + count"...)

 cin >> *(first + count);

So the problem of storing an arbitrary amount of data with
a fixed-size program has been solved.

We created the concept of an "array."

But consider this slight variation:

We don't know how big each item is. Perhaps they are
words, not numbers.

Some words are tiny, some are huge...

So how much memory we need to reserve is different for
each item.

(first + count) is not going to suffice.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

